Exponential decay and resonances in a driven system
نویسندگان
چکیده
منابع مشابه
Exponential decay and resonances in a driven system
We study the resonance phenomena for time periodic perturbations of a Hamiltonian H on the Hilbert space L(R). Here, resonances are characterized in terms of time behavior of the survival probability. Our approach uses the Floquet-Howland formalism combined with the results of L. Cattaneo, J.M. Graf and W. Hunziker on resonances for time independent perturbations.
متن کاملExponential decay of spatial correlation in driven diffusive system: A universal feature of macroscopic homogeneous state
Driven diffusive systems have been a paradigm for modelling many physical, chemical, and biological transport processes. In the systems, spatial correlation plays an important role in the emergence of a variety of nonequilibrium phenomena and exhibits rich features such as pronounced oscillations. However, the lack of analytical results of spatial correlation precludes us from fully understandi...
متن کاملExponential Decay of Wavelength in a Dissipative System
Applying a technique developed in a recent work[1] to calculate wavefunction evolution in a dissipative system with Ohmic friction, we show that the wavelength of the wavefunction decays exponentially, while the Brownian motion width gradually increases. In an interference experiment, when these two parameters become equal, the Brownian motion erases the fringes, the system thus approaches clas...
متن کاملNumerical Exponential Decay to Dissipative Bresse System
We consider the Bresse system with frictional dissipative terms acting in all the equations. We show the exponential decay of the solution by using a method developed by Z. Liu and S. Zheng and their collaborators in past years. The numerical computations were made by using the finite difference method to prove the theoretical results. In particular, the finite difference method in our case is ...
متن کاملCONTROL OF CHAOS IN A DRIVEN NON LINEAR DYNAMICAL SYSTEM
We present a numerical study of a one-dimensional version of the Burridge-Knopoff model [16] of N-site chain of spring-blocks with stick-slip dynamics. Our numerical analysis and computer simulations lead to a set of different results corresponding to different boundary conditions. It is shown that we can convert a chaotic behaviour system to a highly ordered and periodic behaviour by making on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2012
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2012.06.040